Skip to main content
                     
As-Built As-Built - Revit As-Built - AutoCAD VirtuSurv - VirtuSurv 2018 As-Built - Modeler VirtuSurv - VirtuSurv 2019          
BuildIT BuildIT - Projector BuildIT - Construction BuildIT - Metrology              
CAM2 CAM2 - SmartInspect CAM2 - 2023 CAM2 - 2018 CAM2 - Measure 10 CAM2 - Measure Q CAM2 - Measure X CAM2 - Measure 3/4 CAM2 - AnthroCAM CAM2 - 2019 CAM2 - 2020
CAM2 CAM2 - 2021                  
Cobalt 3D Imager 3D Imager - Cobalt                  
Cobalt Design Cobalt Design - M Cobalt Design - S Cobalt Design - Dual              
Computers Computers - All Computers                  
FARO Aras 360 & CAD Zone FARO CAD Zone - Fire & Insurance FARO CAD Zone - Crime & Crash FARO CAD Zone - CZ Point Cloud FARO CAD Zone - First Look Pro FARO 360 - Reality FARO 360 - HD FARO 360 - Blitz FARO 360 - Genius    
FARO Connect FARO Connect - Connect                  
FARO Zone present4D - present4D                  
FARO Zone 2D FARO Zone 2D - 2018 FARO Zone 2D - 2019 FARO Zone 2D - 2020 FARO Zone 2D - 2021 FARO Zone 2D - 2022 FARO Zone 2D - 2023        
FARO Zone 3D FARO Zone 3D - 2018 FARO Zone 3D - 2019 FARO Zone 3D - 2020 FARO Zone 3D - 2021 FARO Zone 3D - 2022 FARO Zone 3D - 2023 FARO Zone 3D - 2024      
FARO Zone 3D Advanced FARO Zone 3D Advanced - 2018 FARO Zone 3D Advanced - 2019 FARO Zone 3D Advanced - 2020 FARO Zone 3D Advanced - 2021 FARO Zone 3D Advanced - 2022          
FaroArm/ScanArm FaroArm/ScanArm - Quantum S FaroArm/ScanArm - Quantum M FaroArm/ScanArm - Quantum E FaroArm/ScanArm - Edge FaroArm/ScanArm - Fusion FaroArm/ScanArm - Prime FaroArm/ScanArm - Platinum FaroArm/ScanArm - Legacy Quantum FaroArm/ScanArm - Titanium FaroArm/ScanArm - Advantage
FaroArm/ScanArm FaroArm/ScanArm - Digital Template FaroArm/ScanArm - Gage FaroArm/ScanArm - Quantum S Max FaroArm/ScanArm - Quantum M Max FaroArm/ScanArm - Quantum E Max FaroArm/ScanArm - Gage Max        
GeoSLAM Software GeoSLAM Software - Connect GeoSLAM Software - Draw GeoSLAM Software - Hub GeoSLAM Software - Volumes            
GeoSLAM ZEB GeoSLAM ZEB - Horizon GeoSLAM ZEB - Horizon RT GeoSLAM ZEB - Revo GeoSLAM ZEB - Revo RT GeoSLAM ZEB - Go          
Hand Held Scanner 2D Hand Held Scanner - ScanPlan 3D Hand Held Scanner - Freestyle3D 3D Hand Held Scanner - Freestyle3D X 3D Hand Held Scanner - Freestyle3D Objects 3D Hand Held Scanner - Freestyle 2          
Language Quality HT MT AT NT INT - Internal Sales - Internal Resources Sales - Order and Quote Sales - Product Info Sales - Sales Readiness Sales - Training
Language Quality Sales - Product Launch Sales - Promotions CS - Quote to Invoice CS - Phone System CS - New Hire Training CS - General CS - Product Info CS - Licensing CS - Procedures General CS - Procedures Salesforce
Language Quality CS - Procedures Loaner CS - Procedures SAP                
Languages Language - English Language - Japanese Language - German Language - Chinese Language - Spanish Language - Italian Language - Portuguese Language - French Language - Korean  
Laser Projector RayTracer - RayTracer Laser Projector - Tracer M Laser Projector - Tracer SI              
Laser Radar Imaging Laser Radar - VectorRI                  
Laser Scanner 3D Laser Scanner - Focus S 3D Laser Scanner - Focus M 3D Laser Scanner - Focus3D 3D Laser Scanner - Focus3D X 3D Laser Scanner - Focus3D X HDR 3D Laser Scanner - Focus3D S 3D Laser Scanner - Photon 3D Laser Scanner - Focus S Plus 3D Laser Scanner - Swift 3D Laser Scanner - Focus Premium
Laser Scanner 3D Laser Scanner - Focus Core                  
Laser Tracker Laser Tracker - Vantage Laser Tracker - ION Laser Tracker - Vantage S Laser Tracker - Si Laser Tracker - X Laser Tracker - Xi Laser Tracker - Vantage E Laser Tracker - Vantage S6 Laser Tracker - Vantage E6  
Legacy Gage Legacy Gage - Bluetooth Legacy Gage - Plus Legacy Gage - Standard Legacy Gage - Power            
Legacy Software Legacy Software - CAM2 Gage Legacy Software - Gage Software Legacy Software - Insight              
Mobile Scanner Mobile Scanner - Orbis                  
PointSense PointSense - Basic PointSense - Pro PointSense - Building PointSense - Plant PointSense - Heritage PointSense - Revit CAD Plugin - TachyCAD Building CAD Plugin - TachyCAD Archeology CAD Plugin - TachyCAD Interior CAD Plugin - PhoToPlan Basic
PointSense CAD Plugin - PhoToPlan CAD Plugin - PhoToPlan Pro CAD Plugin - PhoToPlan Ultimate CAD Plugin - DisToPlan CAD Plugin - MonuMap CAD Plugin - hylasFM CAD Plugin - VirtuSurv      
RevEng RevEng - RevEng                  
ScanArm ScanArm - Design ScanArm 2.0 ScanArm - Design ScanArm ScanArm - Forensic ScanArm ScanArm - Design ScanArm 2.5C            
SCENE SCENE - Capture and Process SCENE - WebShare Server and 2Go SCENE - WebShare 2Go App SCENE - 2018 SCENE - 7.x SCENE - 6.x SCENE - 5.x SCENE - 4.x SCENE - LT SCENE - 2019
SCENE SCENE - 2go App SCENE - 2020 SCENE - 2021 SCENE - 2022 SCENE - 2023          
Serial FaroArm Serial FaroArm - Silver Serial FaroArm - Gold Serial FaroArm - Bronze              
Sphere FARO Sphere - Sphere                  
Visual Inspect Visual Inspect - App Visual Inspect - CAD Translator                
WebShare WebShare - Enterprise WebShare - WebShare Cloud                

Laser Tracker

Vantage S

Vantage S6

Vantage E

Vantage E6

Vantage

ION

Si

X

Xi

FARO® Knowledge Base

Thermal Effects in Measurement with CMMs

Thermal Effects in Measurement

Portable Coordinate Measurement Machines enable measurement outside of the CMM room. They are designed to work on the shop floor where they deal with vibration, variable temperatures, temperature gradients and obstructions. This solution deals with the topic of Thermal Effects in Measurement, and focuses on operating procedures for the FARO® Laser Tracker to optimize accuracy in an environment with changing temperature.

All measurement devices have temperature sensitivity. Fixed CMMs perform best when placed in a thermally stable environment, but are still subject to local temperature variation within the machine. Portable CMMs must deal with a changing outside environment along with any internal temperature variation caused by varying duty cycles.

Temperature variation in the tracker’s working environment affects the scale of the laser wavelength, as well as the scale of the part, the floor, the stand, and the tracker itself. Temperature variation inside the tracker due to ambient temperature changes and tracker duty cycle can result in drift and changes in accuracy. In order to achieve the highest accuracy in an uncontrolled environment, it is important to follow proper measurement procedures to monitor the environment.

Laser Wavelength and Distance Accuracy
The FARO Laser Tracker has remote temperature sensor ports on the Master Control Unit (MCU). The external ports are used to read ambient air temperature in order to scale the laser wavelength of the Helium Neon and Infrared lasers. The temperature is measured every 5 seconds, and applied to the wavelength calculation. Placing the air sensor(s) close to the path of the laser beam maximizes the accuracy of the distance measurements. When more than one air sensor is used, the tracker uses the average reading.

Pointing Accuracy
When portable CMMs are subject to temperature change, they often require new compensation parameters to account for mechanical changes in the system. The FARO Laser Tracker is designed to reduce these affects through the use of fiber optics and a small optical platform. The optics are fixed onto a small platform, and the beam is steered by moving the entire platform under servo motor control. There are no optical elements used for beam steering.

To maximize pointing accuracy in an environment of changing temperature, backsight readings can be taken periodically to verify tracker accuracy. If the backsight results do not meet the measurement application requirements, Pointing CompIT can then be run to restore the tracker to maximum accuracy. Pointing CompIT takes about five minutes to run.

Drift
Drift is a term that refers to movement during a measurement session. This movement is actual physical movement of the part or measurement system due to vibration, physical contact or temperature change. For the purposes of this document, the discussion will focus on temperature change.

Changes in temperature have a direct affect on the size of the part. As the temperature rises, the part will grow, and the tracker will see this growth as movement of the part. Temperature changes will also affect the stand and the tracker itself.

To properly deal with drift, it is important to establish a good set of reference points at the beginning of a measurement session. These points are measured prior to any feature measurements, thus creating a baseline for scale, part position and tracker position. The reference points are then checked periodically to ensure that no drift has occurred. If drift is detected, these points are re-measured to re-transform the tracker back into the part. This process is equally effective for part drift as well as tracker movement due to changes in the stand or changes in the tracker itself.


Internal Temperature Monitoring of the FARO Laser Tracker
The FARO Laser Tracker has internal temperature sensors that continuously read internal temperature at critical locations inside the tracker.  These sensors are used to monitor the tracker's temperature during the initial warm up and for internal compensations of the measurements in real time using techniques patented by FARO.


Keywords:

thermal expansion, thermal, temperature, drift