Skip to main content
                     
As-Built As-Built - Revit As-Built - AutoCAD VirtuSurv - VirtuSurv 2018 As-Built - Modeler VirtuSurv - VirtuSurv 2019          
BuildIT BuildIT - Projector BuildIT - Construction BuildIT - Metrology              
CAM2 CAM2 - SmartInspect CAM2 - 2024 CAM2 - 2023 CAM2 - 2018 CAM2 - Measure 10 CAM2 - Measure Q CAM2 - Measure X CAM2 - Measure 3/4 CAM2 - AnthroCAM CAM2 - 2019
CAM2 CAM2 - 2020 CAM2 - 2021                
Cobalt 3D Imager 3D Imager - Cobalt                  
Cobalt Design Cobalt Design - M Cobalt Design - S Cobalt Design - Dual              
Computers Computers - All Computers                  
FARO Aras 360 & CAD Zone FARO CAD Zone - Fire & Insurance FARO CAD Zone - Crime & Crash FARO CAD Zone - CZ Point Cloud FARO CAD Zone - First Look Pro FARO 360 - Reality FARO 360 - HD FARO 360 - Blitz FARO 360 - Genius    
FARO Connect FARO Connect - Connect                  
FARO Zone present4D - present4D                  
FARO Zone 2D FARO Zone 2D - 2018 FARO Zone 2D - 2019 FARO Zone 2D - 2020 FARO Zone 2D - 2021 FARO Zone 2D - 2022 FARO Zone 2D - 2023 FARO Zone 2D - 2024      
FARO Zone 3D FARO Zone 3D - 2018 FARO Zone 3D - 2019 FARO Zone 3D - 2020 FARO Zone 3D - 2021 FARO Zone 3D - 2022 FARO Zone 3D - 2023 FARO Zone 3D - 2024      
FARO Zone 3D Advanced FARO Zone 3D Advanced - 2018 FARO Zone 3D Advanced - 2019 FARO Zone 3D Advanced - 2020 FARO Zone 3D Advanced - 2021 FARO Zone 3D Advanced - 2022          
FaroArm/ScanArm FaroArm/ScanArm - Quantum S FaroArm/ScanArm - Quantum M FaroArm/ScanArm - Quantum E FaroArm/ScanArm - Edge FaroArm/ScanArm - Fusion FaroArm/ScanArm - Prime FaroArm/ScanArm - Platinum FaroArm/ScanArm - Legacy Quantum FaroArm/ScanArm - Titanium FaroArm/ScanArm - Advantage
FaroArm/ScanArm FaroArm/ScanArm - Digital Template FaroArm/ScanArm - Gage FaroArm/ScanArm - Quantum S Max FaroArm/ScanArm - Quantum M Max FaroArm/ScanArm - Quantum E Max FaroArm/ScanArm - Gage Max FaroArm/ScanArm - Quantum X.S FaroArm/ScanArm - Quantum X.M FaroArm/ScanArm - Quantum X.E  
GeoSLAM Software GeoSLAM Software - Connect GeoSLAM Software - Draw GeoSLAM Software - Hub GeoSLAM Software - Volumes            
GeoSLAM ZEB GeoSLAM ZEB - Horizon GeoSLAM ZEB - Horizon RT GeoSLAM ZEB - Revo GeoSLAM ZEB - Revo RT GeoSLAM ZEB - Go          
Hand Held Scanner 2D Hand Held Scanner - ScanPlan 3D Hand Held Scanner - Freestyle3D 3D Hand Held Scanner - Freestyle3D X 3D Hand Held Scanner - Freestyle3D Objects 3D Hand Held Scanner - Freestyle 2          
Language Quality HT MT AT NT INT - Internal Sales - Internal Resources Sales - Order and Quote Sales - Product Info Sales - Sales Readiness Sales - Training
Language Quality Sales - Product Launch Sales - Promotions CS - Quote to Invoice CS - Phone System CS - New Hire Training CS - General CS - Product Info CS - Licensing CS - Onboarding CS - Procedures General
Language Quality CS - Procedures Salesforce CS - Procedures Loaner CS - Procedures SAP              
Languages Language - English Language - Japanese Language - German Language - Chinese Language - Spanish Language - Italian Language - Portuguese Language - French Language - Korean  
Laser Projector RayTracer - RayTracer Laser Projector - Tracer M Laser Projector - Tracer SI              
Laser Radar Imaging Laser Radar - VectorRI                  
Laser Scanner 3D Laser Scanner - Focus S 3D Laser Scanner - Focus M 3D Laser Scanner - Focus3D 3D Laser Scanner - Focus3D X 3D Laser Scanner - Focus3D X HDR 3D Laser Scanner - Focus3D S 3D Laser Scanner - Photon 3D Laser Scanner - Focus S Plus 3D Laser Scanner - Swift 3D Laser Scanner - Focus Premium
Laser Scanner 3D Laser Scanner - Focus Core 3D Laser Scanner - Focus Premium Max                
Laser Tracker Laser Tracker - Vantage Laser Tracker - ION Laser Tracker - Vantage S Laser Tracker - Si Laser Tracker - X Laser Tracker - Xi Laser Tracker - Vantage E Laser Tracker - Vantage S6 Laser Tracker - Vantage E6  
Legacy Gage Legacy Gage - Bluetooth Legacy Gage - Plus Legacy Gage - Standard Legacy Gage - Power            
Legacy Software Legacy Software - CAM2 Gage Legacy Software - Gage Software Legacy Software - Insight              
Mobile Scanner Mobile Scanner - Orbis                  
PointSense PointSense - Basic PointSense - Pro PointSense - Building PointSense - Plant PointSense - Heritage PointSense - Revit CAD Plugin - TachyCAD Building CAD Plugin - TachyCAD Archeology CAD Plugin - TachyCAD Interior CAD Plugin - PhoToPlan Basic
PointSense CAD Plugin - PhoToPlan CAD Plugin - PhoToPlan Pro CAD Plugin - PhoToPlan Ultimate CAD Plugin - DisToPlan CAD Plugin - MonuMap CAD Plugin - hylasFM CAD Plugin - VirtuSurv      
RevEng RevEng - RevEng                  
ScanArm ScanArm - Design ScanArm 2.0 ScanArm - Design ScanArm ScanArm - Forensic ScanArm ScanArm - Design ScanArm 2.5C            
SCENE SCENE - Capture and Process SCENE - WebShare Server and 2Go SCENE - WebShare 2Go App SCENE - 2024 SCENE - 2018 SCENE - 7.x SCENE - 6.x SCENE - 5.x SCENE - 4.x SCENE - LT
SCENE SCENE - 2019 SCENE - 2go App SCENE - 2020 SCENE - 2021 SCENE - 2022 SCENE - 2023        
Serial FaroArm Serial FaroArm - Silver Serial FaroArm - Gold Serial FaroArm - Bronze              
Sphere FARO Sphere - Sphere                  
Visual Inspect Visual Inspect - App Visual Inspect - CAD Translator                
WebShare WebShare - Enterprise WebShare - WebShare Cloud                

Laser Tracker

Vantage S

Vantage S6

Vantage E

Vantage E6

Vantage

ION

Si

X

Xi

FARO® Knowledge Base

Laser Tracker Target Information, Troubleshooting, and Use and Care

Overview

The FARO® Laser Tracker measures the three-dimensional position of an optical target with a laser beam and two angular encoders. If the tracker has an optional interferometer (IFM) it emits a Helium Neon (HeNe) laser that is reflected back from the target. Absolute Distance Meter (ADM) Only trackers have a laser diode that produces this red beam of the same wavelength.  The tracker senses the position of the return beam and follows it. The three dimensional position of the target is calculated from the distance to the target and the azimuth and zenith angles of the angular encoders. This document describes the specifications, recommended applications, care and troubleshooting for laser tracker targets.

The tracker’s optical target is called a retroreflector. A retroreflector has three adjacent reflective panels that are perpendicular to each other. It is sometimes referred to as a corner cube, since the three panels look like the inside corner of a cube. A retroreflector reflects all light in a parallel path, so the tracker’s beam enters and exits the reflector in parallel, and returns to the tracker regardless of its orientation.

In order for a retroreflector to work with a tracker there are several requirements. Reflectivity, dihedral angle and polarization all have critical specifications. In addition, the retro-reflector must be precision mounted into a ball or probe assembly.

The primary target used with the FARO Laser Tracker is the 1 ½” Spherically Mount Retroreflector or SMR. There are three sizes of SMRs, as well as two Retro-Probes, Repeatability Targets and two sizes of the new Bronze SMR.

Reflectivity
The FARO Laser Tracker uses two distance measurement systems with two different laser beams. The HeNe beam is used for tracking and Interferometer (IFM) distance measurement, and an Infrared beam is used for Absolute Distance Measurement (ADM). The coating on the target’s reflective surfaces must meet specification for both the HeNe and infrared laser beam wavelength.

Dihedral Angle
The dihedral angle is the angle between each panel of the retroreflector. It is expressed as a deviation from 90 degrees. A perfect retroreflector would have a dihedral angle of zero. It is also important to evaluate the difference in dihedral angles for adjacent panels. The table below denotes angle and angle difference specifications.

Polarization
Larger retroreflectors have panels that are matched for polarization. When a retroreflector is tilted away from the beam, mismatched panels can change the contrast that is necessary for the interferometer to count. Smaller retroreflectors do not require matching, since they cannot be tilted to angles where this effect occurs.

Centering
The vertex of the retroreflector must be centered in the ball or probe per the target specification. SMRs have a radial centering specification. RetroProbes have a lateral and radial specification.

Recommended Use and Care

To minimize the affect of centering error, the SMR should be held in the same orientation for all measurements. Verifying that the serial number is up is an easy way to improve repeatability and accuracy.

Aiming the SMR directly back at the tracker will minimize the effects of polarization mismatch and beam clipping.

Check the SMR and target nests for debris. The magnetic tooling that is used with the SMR can easily pick up steel, which can stick to the SMRs and tooling causing bad readings.

Keep SMRs and RetroProbes clean. Dust and debris should be blown off the reflective surfaces with pure canned air. If necessary the surfaces can be cleaned with a sterile cotton swab and water vapor. Carefully breathe on the surface and wipe it with the swab. Gently roll the swab as it wipes the surface. Do not re-use the swab. If water vapor cannot remove the mark, denatured alcohol can be used.
NOTE: The coatings on the reflective surfaces are critical for the performance of the target. Cleaning can degrade the reflectivity of the surface, and should only be done when necessary.

Troubleshooting

Tracker performance depends on the tracker and the target meeting specifications. The following table lists performance issues, and the related critical target specifications. Definitions for the performance issues are listed below.

Performance Issue Target Specification
Dynamic Repeatability Vertex Centering, Dihedral Angle
Backsight Error Dihedral Angle
IFM Dropout Polarization, Reflectivity
Point-to-Point Accuracy Vertex Centering, Dihedral Angle
ADM invalid Reflectivity

Dynamic Repeatability
Dynamic repeatability is the repeatability of a target that has been removed and replaced.

Backsight Error
Backsight error is the difference between a target position measured in frontsight and backsight mode. The reported backsight error value is twice the worst-case single point error at the range where it is measured.

Interferometer Dropout
The Interferometer (IFM) measures distance by counting ¼ wave increments of the HeNe laser. If the IFM misses a count, it goes invalid and reports a dropout. When a dropout occurs, the tracker reports this to the user with a blinking green light near the laser aperture, and the application software will not allow a measurement.

Point-to-Point Accuracy
Point-to-point accuracy is the calculated distance between two measured points.

ADM Invalid
An ADM reading can be invalid if the infrared beam return intensity is too high or too low.